- axiome de Borel-Lebesgue ou propriété de Borel-Lebesgue
-
Encyclopédie Universelle. 2012.
● axiome de Borel-Lebesgue ou propriété de Borel-Lebesgue Propriété d'un ensemble E quasi-compact selon laquelle, « de tout recouvrement ouvert de E, on peut extraire un sous-recouvrement fini ».
Encyclopédie Universelle. 2012.
Propriété de Borel-Lebesgue — Compacité (mathématiques) Pour les articles homonymes, voir Compacité et Compact. En topologie de la droite réelle, la propriété de Borel Lebesgue est une propriété topologique remarquable des segments, basée sur la notion de recouvrement. Elle… … Wikipédia en Français
Propriété de Bolzano-Weierstrass — Théorème de Bolzano Weierstrass En topologie des espaces métriques, le théorème de Bolzano Weierstrass donne une caractérisation séquentielle des espaces compacts. Il tire son nom des mathématiciens Bernard Bolzano et Karl Weierstrass. Sommaire 1 … Wikipédia en Français
LEBESGUE (H.) — Le mathématicien Henri Lebesgue est l’un des fondateurs de l’analyse moderne. Presque tous ses travaux se rattachent à la théorie des fonctions de variables réelles. Sa conception de l’intégration et de la mesure renouvelle l’étude des problèmes… … Encyclopédie Universelle
Axiome Du Choix — L axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles. Sommaire 1 Énoncé 1.1 Autres formulations 2 Énoncés équivalents … Wikipédia en Français
Axiome de choix — Axiome du choix L axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles. Sommaire 1 Énoncé 1.1 Autres formulations 2 Énoncés équivalents … Wikipédia en Français
Axiome du choix — En mathématiques, l axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles. Sommaire 1 Énoncé 1.1 Autres formulations 2 Énoncés équivalents … Wikipédia en Français
Compacite (mathematiques) — Compacité (mathématiques) Pour les articles homonymes, voir Compacité et Compact. En topologie de la droite réelle, la propriété de Borel Lebesgue est une propriété topologique remarquable des segments, basée sur la notion de recouvrement. Elle… … Wikipédia en Français
Compacité (Mathématiques) — Pour les articles homonymes, voir Compacité et Compact. En topologie de la droite réelle, la propriété de Borel Lebesgue est une propriété topologique remarquable des segments, basée sur la notion de recouvrement. Elle sert d axiome en topologie… … Wikipédia en Français
Espace compact — Compacité (mathématiques) Pour les articles homonymes, voir Compacité et Compact. En topologie de la droite réelle, la propriété de Borel Lebesgue est une propriété topologique remarquable des segments, basée sur la notion de recouvrement. Elle… … Wikipédia en Français
Quasi-compacité — Compacité (mathématiques) Pour les articles homonymes, voir Compacité et Compact. En topologie de la droite réelle, la propriété de Borel Lebesgue est une propriété topologique remarquable des segments, basée sur la notion de recouvrement. Elle… … Wikipédia en Français